读《小学数学与数学思想方法》有感

时间:2024-03-27 05:38:19
读《小学数学与数学思想方法》有感

读《小学数学与数学思想方法》有感

读完一本名著以后,大家一定对生活有了新的感悟和看法,需要好好地就所收获的东西写一篇读后感了。怎样写读后感才能避免写成“流水账”呢?下面是小编收集整理的读《小学数学与数学思想方法》有感,欢迎阅读,希望大家能够喜欢。

读《小学数学与数学思想方法》有感1

之前一提到数学思想方法,总是感觉似乎知道一些,想过应用它来指导自己的教学,但是自身对数学思想方法的理解不深透,另外又觉得数学思想方法的渗透教学在课堂教学中短时期难以见成效。所以,本人的教学现状中对数学思想渗透的深度远远不够。

而读了《小学数学与数学思想方法》这本书,王永春老师对数学各类思想方法的梳理和对新教材思想方法的解读,让我对新课标的新理念有了更深一层的理解,对小学数学思想方法的内涵有了较为深刻的认识,明确了教材使用和课堂环节中的渗透策略。

《小学数学与数学思想方法》首先对数学数学思想方法的概念、对小学数学教学的意义、对小学数学进行教学的可行性与方法做了简介。其次,梳理了与抽象有关的数学思想:包括抽象思想、符号化思想、分类思想、集合思想、变中有不变思想、有限与无限思想;与推理有关的数学思想:包括归纳思想、类比思想、演绎思想、转化思想、数形结合思想、几何变换思想、极限思想、代换思想;与模型有关的数学思想包括:模型思想、方程思想、函数思想、优化思想、统计思想、随机思想;其他数学思想方法包括:数学美思想、分析法和综 ……此处隐藏3170个字……、数学思想方法的综合应用等。

数学思想是数学方法的进一步提炼和概括,它的抽象概括程度要高一些,而数学方法的操作性更强一些。人们实现数学思想要靠一定的数学方法;而人们选择数学方法又要以一定的数学思想为依据。可以说虽然它们有区别但是又有密切联系。

以下以《三角形内角和》为案例,谈谈我读完这本书的收获:推理是由一个或几个已知判断推出新判断的理性思维形式。推理是数学的基本思维模式,一般包括合情推理与演绎推理。合情推理是一种创造性思维过程,是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断结果,其实质是“发现-猜想”。而演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算,演绎推理是从一般到特殊的推理,其本质是证明和计算。如:多边形内角和就是通过“先归纳后演绎“的推理过程。教学中先使用不完全归纳法推导出多边形内角和的计算方法,这是合情推理,接着通过将多边形分割成三角形的过程进行演绎推理,并进一步要求学生推算十边形的内角和,以及内角和是1080度的图形是几边形,引导学生将计算多边形内角和的一般方法运用到特殊情境。所以在小学生学习新知时,大多先借助合情推理在不完全归纳中理解一般原理,然后在练习和实践中演绎。在教学中要针对例题的特点引导学生经历“先归纳后演绎”的过程,从而培养推理能力。在探究规律的过程中,合情推理与演绎推理相辅相成,缺一不可。

总之在以后教学中既要教数学思想,又要设法去提高学生的思维能力和解决问题的能力,是我努力的方向。而本书是一个很好的参考书。它为我们做的分类,总结,以及列举的应用实例是一个全面而又具体的指导。仔细研读,慢慢尝试,一定有意想不到的收获。

《读《小学数学与数学思想方法》有感.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式